\(\int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx\) [512]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-1)]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 181 \[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {(a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}-\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d} \]

[Out]

(a-I*b)^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/d+(a+I*b)^(3/2)*arctanh((a+b*tan(d*x+c))^(1/2)/(a+
I*b)^(1/2))/d-2*a*(a+b*tan(d*x+c))^(1/2)/d-2/3*(a+b*tan(d*x+c))^(3/2)/d-4/35*a*(a+b*tan(d*x+c))^(5/2)/b^2/d+2/
7*tan(d*x+c)*(a+b*tan(d*x+c))^(5/2)/b/d

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3647, 3711, 12, 3609, 3620, 3618, 65, 214} \[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {(a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d} \]

[In]

Int[Tan[c + d*x]^3*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[
c + d*x]]/Sqrt[a + I*b]])/d - (2*a*Sqrt[a + b*Tan[c + d*x]])/d - (2*(a + b*Tan[c + d*x])^(3/2))/(3*d) - (4*a*(
a + b*Tan[c + d*x])^(5/2))/(35*b^2*d) + (2*Tan[c + d*x]*(a + b*Tan[c + d*x])^(5/2))/(7*b*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3609

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3647

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Dist[1/(d*(m + n -
1)), Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*(
1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2,
 x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}+\frac {2 \int (a+b \tan (c+d x))^{3/2} \left (-a-\frac {7}{2} b \tan (c+d x)-a \tan ^2(c+d x)\right ) \, dx}{7 b} \\ & = -\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}+\frac {2 \int -\frac {7}{2} b \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx}{7 b} \\ & = -\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\int \tan (c+d x) (a+b \tan (c+d x))^{3/2} \, dx \\ & = -\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\int (-b+a \tan (c+d x)) \sqrt {a+b \tan (c+d x)} \, dx \\ & = -\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}-\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\int \frac {-2 a b+\left (a^2-b^2\right ) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = -\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}-\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}+\frac {1}{2} \left (i (a-i b)^2\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx-\frac {1}{2} \left (i (a+i b)^2\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx \\ & = -\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}-\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\frac {(a-i b)^2 \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}-\frac {(a+i b)^2 \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d} \\ & = -\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}-\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d}-\frac {\left (i (a-i b)^2\right ) \text {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d}+\frac {\left (i (a+i b)^2\right ) \text {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{b d} \\ & = \frac {(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {(a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}-\frac {2 a \sqrt {a+b \tan (c+d x)}}{d}-\frac {2 (a+b \tan (c+d x))^{3/2}}{3 d}-\frac {4 a (a+b \tan (c+d x))^{5/2}}{35 b^2 d}+\frac {2 \tan (c+d x) (a+b \tan (c+d x))^{5/2}}{7 b d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.76 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.94 \[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {(a-i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d}+\frac {(a+i b)^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d}+\frac {2 \sqrt {a+b \tan (c+d x)} \left (-2 a \left (3 a^2+70 b^2\right )+b \left (3 a^2-35 b^2\right ) \tan (c+d x)+24 a b^2 \tan ^2(c+d x)+15 b^3 \tan ^3(c+d x)\right )}{105 b^2 d} \]

[In]

Integrate[Tan[c + d*x]^3*(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((a - I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d + ((a + I*b)^(3/2)*ArcTanh[Sqrt[a + b*Tan[
c + d*x]]/Sqrt[a + I*b]])/d + (2*Sqrt[a + b*Tan[c + d*x]]*(-2*a*(3*a^2 + 70*b^2) + b*(3*a^2 - 35*b^2)*Tan[c +
d*x] + 24*a*b^2*Tan[c + d*x]^2 + 15*b^3*Tan[c + d*x]^3))/(105*b^2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(862\) vs. \(2(151)=302\).

Time = 0.29 (sec) , antiderivative size = 863, normalized size of antiderivative = 4.77

method result size
derivativedivides \(\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {7}{2}}}{7 d \,b^{2}}-\frac {2 a \left (a +b \tan \left (d x +c \right )\right )^{\frac {5}{2}}}{5 b^{2} d}-\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}-\frac {2 a \sqrt {a +b \tan \left (d x +c \right )}}{d}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}-\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {b^{2} \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b^{2} \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(863\)
default \(\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {7}{2}}}{7 d \,b^{2}}-\frac {2 a \left (a +b \tan \left (d x +c \right )\right )^{\frac {5}{2}}}{5 b^{2} d}-\frac {2 \left (a +b \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}-\frac {2 a \sqrt {a +b \tan \left (d x +c \right )}}{d}+\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}-\frac {\ln \left (\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-b \tan \left (d x +c \right )-a -\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}-\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {\arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {b^{2} \arctan \left (\frac {\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}-2 \sqrt {a +b \tan \left (d x +c \right )}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, \sqrt {a^{2}+b^{2}}}{4 d}+\frac {\ln \left (b \tan \left (d x +c \right )+a +\sqrt {a +b \tan \left (d x +c \right )}\, \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}+\sqrt {a^{2}+b^{2}}\right ) \sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}\, a}{2 d}+\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) \sqrt {a^{2}+b^{2}}\, a}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}-\frac {\arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right ) a^{2}}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}+\frac {b^{2} \arctan \left (\frac {2 \sqrt {a +b \tan \left (d x +c \right )}+\sqrt {2 \sqrt {a^{2}+b^{2}}+2 a}}{\sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\right )}{d \sqrt {2 \sqrt {a^{2}+b^{2}}-2 a}}\) \(863\)

[In]

int(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/7/d/b^2*(a+b*tan(d*x+c))^(7/2)-2/5*a*(a+b*tan(d*x+c))^(5/2)/b^2/d-2/3*(a+b*tan(d*x+c))^(3/2)/d-2*a*(a+b*tan(
d*x+c))^(1/2)/d+1/4/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*
(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)-1/2/d*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*
tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^
2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^(1/2)*a+1/d/(2*(a^2
+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)
^(1/2))*a^2-1/d*b^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/
2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/4/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2
)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)+1/2/d*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2
)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/(2*(a^2+b^2)^(1/2)-2*a)^(
1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*(a^2+b^2)^
(1/2)*a-1/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/d*b^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+
b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 817 vs. \(2 (147) = 294\).

Time = 0.26 (sec) , antiderivative size = 817, normalized size of antiderivative = 4.51 \[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\frac {105 \, b^{2} d \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} + {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} - {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) - 105 \, b^{2} d \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} - {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} - {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} + d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) - 105 \, b^{2} d \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} + {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} + {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) + 105 \, b^{2} d \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}} \log \left (-{\left (3 \, a^{4} + 2 \, a^{2} b^{2} - b^{4}\right )} \sqrt {b \tan \left (d x + c\right ) + a} - {\left (d^{3} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}} + {\left (3 \, a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {a^{3} - 3 \, a b^{2} - d^{2} \sqrt {-\frac {9 \, a^{4} b^{2} - 6 \, a^{2} b^{4} + b^{6}}{d^{4}}}}{d^{2}}}\right ) + 4 \, {\left (15 \, b^{3} \tan \left (d x + c\right )^{3} + 24 \, a b^{2} \tan \left (d x + c\right )^{2} - 6 \, a^{3} - 140 \, a b^{2} + {\left (3 \, a^{2} b - 35 \, b^{3}\right )} \tan \left (d x + c\right )\right )} \sqrt {b \tan \left (d x + c\right ) + a}}{210 \, b^{2} d} \]

[In]

integrate(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/210*(105*b^2*d*sqrt((a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4 + 2*a^2*
b^2 - b^4)*sqrt(b*tan(d*x + c) + a) + (d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) - (3*a^3 - a*b^2)*d)*sqrt(
(a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) - 105*b^2*d*sqrt((a^3 - 3*a*b^2 + d^2*sqr
t(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4 + 2*a^2*b^2 - b^4)*sqrt(b*tan(d*x + c) + a) - (d^3*sqr
t(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) - (3*a^3 - a*b^2)*d)*sqrt((a^3 - 3*a*b^2 + d^2*sqrt(-(9*a^4*b^2 - 6*a^2*
b^4 + b^6)/d^4))/d^2)) - 105*b^2*d*sqrt((a^3 - 3*a*b^2 - d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*lo
g(-(3*a^4 + 2*a^2*b^2 - b^4)*sqrt(b*tan(d*x + c) + a) + (d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^3
 - a*b^2)*d)*sqrt((a^3 - 3*a*b^2 - d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) + 105*b^2*d*sqrt((a^3 -
 3*a*b^2 - d^2*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)*log(-(3*a^4 + 2*a^2*b^2 - b^4)*sqrt(b*tan(d*x +
c) + a) - (d^3*sqrt(-(9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4) + (3*a^3 - a*b^2)*d)*sqrt((a^3 - 3*a*b^2 - d^2*sqrt(-(
9*a^4*b^2 - 6*a^2*b^4 + b^6)/d^4))/d^2)) + 4*(15*b^3*tan(d*x + c)^3 + 24*a*b^2*tan(d*x + c)^2 - 6*a^3 - 140*a*
b^2 + (3*a^2*b - 35*b^3)*tan(d*x + c))*sqrt(b*tan(d*x + c) + a))/(b^2*d)

Sympy [F]

\[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int \left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \tan ^{3}{\left (c + d x \right )}\, dx \]

[In]

integrate(tan(d*x+c)**3*(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((a + b*tan(c + d*x))**(3/2)*tan(c + d*x)**3, x)

Maxima [F]

\[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\int { {\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \tan \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((b*tan(d*x + c) + a)^(3/2)*tan(d*x + c)^3, x)

Giac [F(-1)]

Timed out. \[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(tan(d*x+c)^3*(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [B] (verification not implemented)

Time = 23.98 (sec) , antiderivative size = 1229, normalized size of antiderivative = 6.79 \[ \int \tan ^3(c+d x) (a+b \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \]

[In]

int(tan(c + d*x)^3*(a + b*tan(c + d*x))^(3/2),x)

[Out]

atan((b^6*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4*d^2))
^(1/2)*32i)/((16*b^8)/d - (a*b^7*16i)/d - (32*a^2*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/d)
 - (32*a*b^5*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4*d^
2))^(1/2))/((16*b^8)/d - (a*b^7*16i)/d - (32*a^2*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/d)
- (a^2*b^4*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4*d^2)
)^(1/2)*96i)/((16*b^8)/d - (a*b^7*16i)/d - (32*a^2*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/d
) + (96*a^3*b^3*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2) - (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) + (a^2*b*3i)/(4
*d^2))^(1/2))/((16*b^8)/d - (a*b^7*16i)/d - (32*a^2*b^6)/d + (a^3*b^5*32i)/d - (48*a^4*b^4)/d + (a^5*b^3*48i)/
d))*(-(3*a*b^2 - a^2*b*3i - a^3 + b^3*1i)/(4*d^2))^(1/2)*2i - atan((b^6*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^2
) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2)*32i)/((32*a^2*b^6)/d - (a*b^7*16i)/d - (1
6*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/d) + (32*a*b^5*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*
d^2) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2))/((32*a^2*b^6)/d - (a*b^7*16i)/d - (16
*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/d) - (a^2*b^4*(a + b*tan(c + d*x))^(1/2)*(a^3/(4*d^
2) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2)*96i)/((32*a^2*b^6)/d - (a*b^7*16i)/d - (
16*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/d) - (96*a^3*b^3*(a + b*tan(c + d*x))^(1/2)*(a^3/
(4*d^2) + (b^3*1i)/(4*d^2) - (3*a*b^2)/(4*d^2) - (a^2*b*3i)/(4*d^2))^(1/2))/((32*a^2*b^6)/d - (a*b^7*16i)/d -
(16*b^8)/d + (a^3*b^5*32i)/d + (48*a^4*b^4)/d + (a^5*b^3*48i)/d))*(-(3*a*b^2 + a^2*b*3i - a^3 - b^3*1i)/(4*d^2
))^(1/2)*2i + (a + b*tan(c + d*x))^(1/2)*(2*a*((2*a^2)/(b^2*d) - (2*(a^2 + b^2))/(b^2*d)) - (2*a^3)/(b^2*d) +
(2*a*(a^2 + b^2))/(b^2*d)) + ((2*a^2)/(3*b^2*d) - (2*(a^2 + b^2))/(3*b^2*d))*(a + b*tan(c + d*x))^(3/2) + (2*(
a + b*tan(c + d*x))^(7/2))/(7*b^2*d) - (2*a*(a + b*tan(c + d*x))^(5/2))/(5*b^2*d)